Veröffentlichungen

Veröffentlichungen des IRST

Veröffentlichungen

  1. 2024

    1. P. Tamadonfar, S. Karimkashi, T. Zirwes, V. Vuorinen, und O. Kaario, „A numerical study on premixed laminar ammonia/air flames enriched with hydrogen: An analysis on flame–wall interaction“, Combustion and Flame, Bd. 265, S. 113444, Juli (2024).
    2. T. Zirwes, S. Eckart, F. Zhang, T. L. Kaiser, K. Oberleithner, O. T. Stein, H. Bockhorn, und A. Kronenburg, „Structure and dynamics of hexagonal cells in H2/CO2 flames“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105332, (2024).
    3. G. Vignat, T. Zirwes, É. Boigné, und M. Ihme, „Experimental demonstration of a two-stage porous media burner for low-emission ammonia combustion“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105491, (2024).
    4. T. Zirwes, F. Zhang, T. L. Kaiser, K. Oberleithner, O. T. Stein, H. Bockhorn, und A. Kronenburg, „The role of thermodiffusion and dimensionality in the formation of cellular instabilities in hydrogen flames“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105665, (2024).
    5. R. Meier, T. Zirwes, F. Zhang, H. Bockhorn, und A. A. M. Oliveira, „Numerical investigation of unsteady flame propagation assisted by low-temperature chemistry“, Fuel, Bd. 364, S. 130895, (2024).
    6. T. L. Kaiser, T. Zirwes, F. Zhang, und K. Oberleithner, „On the importance of turbulence modelling in a linear mean field analysis of turbulent flame configurations“, in Nineteenth International Conference on Numerical Combustion. Kyoto. Japan (Presentation), (2024).
    7. T. Zirwes, G. Vignat, E. Boigne, und M. Ihme, „Low-order modeling of ammonia combustion in porous media burners“, in Nineteenth International Conference on Numerical Combustion. Kyoto. Japan (Presentation), (2024).
    8. R. Puri, O. T. Stein, und T. Zirwes, „Predicting NOx emissions from porous media burners using physics-informed graph neural networks“, in 35th International Conference on Parallel Computational Fluid Dynamics (ParCFD), Bonn. Germany (Presentation), (2024).
    9. F. Zhang, S. Tavakkol, S. Dercho, J. Zhou, T. Zirwes, M. Zeller, J. Vogt, R. Zhang, H. Bockhorn, und D. Stapf, „Assessment of dynamic characteristics of fluidized beds via numerical simulations“, Physics of Fluids, Bd. 36, Nr. 2, Feb. (2024).
    10. A. Shamooni, X. Wen, P. Debiagi, A. Stagni, J. W. Gärtner, T. Zirwes, O. T. Stein, C. Hasse, und A. Kronenburg, „Carrier-phase direct numerical simulation and flamelet modeling of alkali metal emissions from pulverized biomass flames“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105309, (2024).
    11. S. Gutiérrez, A. Kronenburg, und T. Zirwes, „Modelling differential diffusion using a Sparse-Lagrangian particle approach“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105450, (2024).
    12. J. W. Gärtner, A. Shamooni, T. Zirwes, und A. Kronenburg, „A chemistry load balancing model for OpenFOAM“, Computer Physics Communications, Bd. 305, S. 109322, (2024).
    13. L. Yang, Y. Wang, T. Zirwes, F. Zhang, H. Bockhorn, und Z. Chen, „Effects of Intrinsic Instabilities on the Response of Premixed Hydrogen/Air Conical Flames to Inlet Flow Perturbations“, Flow turbulence and combustion, Bd. 112, Nr. 4, S. 1275–1297, (2024).
    14. N. Iaroslavtceva, A. Kronenburg, und J. W. Gärtner, „A consistent MMC-LES approach for turbulent premixed flames“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105226, (2024).
    15. W. Liu, A. Kronenburg, und T. Zirwes, „Artificial neural networks for combustion chemistry integration“, in Machine Learning for Fluid Dynamics (ERCOFTAC), Paris. France (Presentation), (2024).
    16. T. Zirwes und A. Kronenburg, „Evaluation of Soret Diffusion Models for Hydrogen Combustion“, in Nineteenth International Conference on Numerical Combustion. Kyoto. Japan (Presentation), (2024).
    17. T. L. Kaiser, T. Zirwes, F. Zhang, und K. Oberleithner, „Turbulence closure in linearized analyses of non-uniform density flows“, in ERCOFTAC SIG39 Symposium-Coherent Structures in Aeroacoustics. Rome, Italy (Presentation), (2024).
    18. E. Boigné, T. Zirwes, D. Y. Parkinson, G. Vignat, P. Muhunthan, H. S. Barnard, A. A. MacDowell, und M. Ihme, „Integrated experimental and computational analysis of porous media combustion by combining gas-phase synchrotron μCT, IR-imaging, and pore-resolved simulations“, Combustion and flame, Bd. 259, Nr. January, S. 113132, (2024).
    19. W. Liu, A. Kronenburg, J. W. Gärtner, J. Kirchmann, und T. Zirwes, „Sparse-Lagrangian MMC Modelling of the Sandia Ethylene Sooting Flame“, Proc. Combust. Inst., Bd. 40, Nr. 1, S. 105346, (2024).
    20. F. Zhang, S. Tavakkol, T. Zirwes, und D. Stapf, „Simulation of plastic pyrolysis in a fluidized bed“, in 24th International Symposium on Analytical and Applied Pyrolysis (PYRO2024). Beijing. China (Presentation), (2024).
    21. T. D. Luu, A. Shamooni, A. Kronenburg, D. Braig, J. Mich, B.-D. Nguyen, A. Scholtissek, C. Hasse, G. Thäter, M. Carbone, B. Frohnapfel, und O. T. Stein, „Carrier-phase DNS study of particle size distribution effects on iron particle ignition in a turbulent mixing layer“, Proceedings of the Combustion Institute, Bd. 40, Nr. 1–4, S. 105297, (2024).
    22. J. W. Gärtner und A. Kronenburg, „A novel ELSA model for flash evaporation“, International Journal of Multiphase Flow, Bd. 174, S. 104784, (2024).
  2. 2023

    1. T. Zirwes, M. Sontheimer, F. Zhang, A. Abdelsamie, F. E. H. Pérez, O. T. Stein, H. G. Im, A. Kronenburg, und H. Bockhorn, „Assessment of Numerical Accuracy and Parallel Performance of OpenFOAM and its Reacting Flow Extension EBIdnsFoam“, Flow, Turbul. Combust., Juni (2023).
    2. J. W. Gärtner, A. Kronenburg, A. Rees, und M. Oschwald, „Investigating 3-D Effects on Flashing Cryogenic Jets with Highly Resolved LES“, Flow, Turbul. Combust., Sep. (2023).
    3. N. Iaroslavtceva und A. Kronenburg, „Prediction of Extinction and NOx Formation in Premixed Turbulent Flames Using Multiple Mapping Conditioning“, Rouen, France, (2023).
    4. F. Zhang, S. Tavakkol, S. Dercho, L. Bohlender, T. Zirwes, M. Zeller, J. Vogt, und D. Stapf, „An assessment of fluidized bed dynamics with CPFD simulations“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Presentation), (2023).
    5. J. Kirchmann, A. Kronenburg, M. M. Prenting, S. Karaminejad, T. Dreier, T. Endres, S. Patil, und F. Beyrau, „Characterizing the SpraySyn burners with MMC-LES“, Applications in energy and combustion science, Bd. 15, Nr. September, S. 100182, (2023).
    6. M. Karsch und A. Kronenburg, „Modelling nanoparticle agglomeration in the transition regime: A comparison between detailed Langevin Dynamics and population balance calculations“, Journal of Aerosol Science, Bd. 173, S. 106228, (2023).
    7. A. Kumar, J. Kirchmann, F. Beyrau, und A. Kronenburg, „Jet flapping and its effect on flame oscillations in the SPP1980 SpraySyn burner“, Experimental Thermal and Fluid Science, Bd. 142, S. 110826, (2023).
    8. P. Tamadonfar, S. Karimkashi, T. Zirwes, V. Vuorinen, und O. Kaario, „A study on the head-on quenching of premixed laminar ammonia/air flames enriched with hydrogen“, in Nordic Flame Days (NFD) (Presentation), (2023).
    9. T. L. Kaiser, G. Varillon, W. Polifke, F. Zhang, T. Zirwes, H. Bockhorn, und K. Oberleithner, „Using a linear active-flame analysis to model the response of a turbulent jet flame to acoustic excitation“, in 93rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM2023), Dresden. Germany (Presentation), (2023).
    10. F. Zhang, J. Cao, T. Zirwes, N. Netsch, S. Tavakkol, R. Zhang, H. Bockhorn, und D. Stapf, „Numerical simulation of thermal decomposition of polyethylene with a single-particle model“, in 14th International Conference on Computational Heat and Mass Transfer (ICCHMT), Düsseldorf. Germany (Presentation), (2023).
    11. S. . G. Sánchez, A. Kronenburg, und T. Zirwes, „A side stepping mixing method for Sparse-Lagrangian MMC-LES simulations“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Presentation), (2023).
    12. M. Karsch und A. Kronenburg, „The effect of rotational diffusion on nanoparticle agglomeration“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Presentation), (2023).
    13. N. Iaroslavtceva, A. Kronenburg, und O. T. Stein, „PDF mixing time scales for premixed combustion in the laminar flame limit“, Proc. Combust. Inst., Bd. 39, Nr. 2, S. 2249–2258, Nov. (2023).
    14. J. Kirchmann, F. J. W. A. Martins, A. Kronenburg, A. Kumar, und F. Beyrau, „Investigation of elastic light scattering in flame spray pyrolysis modelled by a stochastic particle approach“, Proc. Combust. Inst., (2023).
    15. M. Sontheimer, A. Kronenburg, und O. T. Stein, „A comparative study of two-phase coupling models for a sparse-Lagrangian particle method“, Proc. Combust. Inst., Bd. 39, (2023).
    16. F. Zhang, S. Tavakkol, T. Zirwes, und D. Stapf, „Simulation of pyrolysis process of waste plastics“, in 9th Baden-Württemberg High Performance Computing Symposium (bwHPC), Mannheim. Germany (Presentation), (2023).
    17. T. Zirwes, F. Zhang, T. L. Kaiser, S. Eckart, K. Oberleithner, O. T. Stein, und H. Bockhorn, „Three-dimensional effects on the local and global structure of thermo-diffusive instabilities in premixed hydrogen flames“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Presentation), (2023).
    18. F. Zhang, S. Tavakkol, S. Dercho, L. Bohlender, T. Zirwes, M. Zeller, J. Vogt, und D. Stapf, „A numerical study of a cold-mode fluidized bed reactor designed for pyrolysis of plastics“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Poster), (2023).
    19. T. L. Kaiser, J. G. von Saldern, M. Goldack, W. Polifke, G. Varillon, F. Zhang, T. Zirwes, H. Bockhorn, und K. Oberleithner, „On the significance of modeling turbulent transport when linearizing the governing equations of a turbulent Bunsen flame“, in SoTiC 2023 -- Symposium on Thermoacoustics in Combustion: Industry meets Academia. Zurich. Switzerland (Presentation), (2023).
    20. T. D. Luu, A. Shamooni, A. Kronenburg, D. Braig, J. Mich, B.-D. Nguyen, A. Scholtissek, C. Hasse, G. Thäter, M. Carbone, B. Frohnapfel, und O. T. Stein, „Carrier-phase DNS of micron-sized iron particles in a turbulent reacting mixing layer“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Presentation), (2023).
    21. N. Iaroslavtceva und A. Kronenburg, „MMC-LES of turbulent premixed flames based on a DNS consistent mixing time scale model“, Berlin, Germany, (2023).
    22. F. Zhang, S. Tavakkol, T. Zirwes, N. Netsch, M. Zeller, J. Vogt, und D. Stapf, „Fundamental research on pyrolysis of plastic waste via numerical simulations“, in Helmholtz Energy Conference 2023, Koblenz. Germany (Presentation), (2023).
    23. P. Shrotriya, R. Schießl, C. Yu, V. Bykov, T. Zirwes, und U. Maas, „An iterative methodology for REDIM reduced chemistry generation and its validation for partially-premixed combustion“, Combustion theory and modelling, Bd. 28, Nr. 1, S. 65–98, (2023).
    24. T. Zirwes, G. Vignat, E. R. Toro, E. Boigné, K. Younes, D. Trimis, und M. Ihme, „Improving volume-averaged simulations of matrix-stabilized combustion through direct X-ray µCT characterization : Application to NH3/H2-air combustion“, Combustion and flame, Bd. 257, Nr. 2, S. 113020, (2023).
    25. A. Pandey und A. Kronenburg, „Effective collision radii for bidisperse systems in the free molecular regime“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Presentation), (2023).
    26. X. Wen, A. Shamooni, H. Nicolai, O. T. Stein, A. Kronenburg, A. M. Kempf, und C. Hasse, „Flame structure analysis and flamelet modeling of turbulent pulverized solid fuel combustion with flue gas recirculation“, Proc. Combust. Inst., (2023).
    27. W. Qian, X. Hui, B. Wang, A. Kronenburg, C.-J. Sung, und Y. Lin, „An investigation into oxidation-induced fragmentation of soot aggregates by Langevin dynamics simulations“, Fuel, Bd. 334, S. 126547, (2023).
    28. T. D. Luu, A. Shamooni, O. T. Stein, A. Kronenburg, S. Popp, H. Nicolai, H. Schneider, X. Wen, und C. Hasse, „Flame characterisation of gas-assisted pulverised coal combustion using FPV-LES“, Proc. Combust. Inst., (2023).
    29. A. Shamooni, O. T. Stein, A. Kronenburg, A. M. Kempf, P. Debiagi, T. Li, A. Dreizler, B. Böhm, und C. Hasse, „Fully-resolved simulations of volatile combustion and NOx formation from single coal particles in recycled flue gas environments“, Proc. Combust. Inst., (2023).
    30. N. Iaroslavtceva, A. Kronenburg, und O. T. Stein, „Multiple Mapping Conditioning Mixing Time Scales for Turbulent Premixed Flames“, Flow, Turbul. Combust., Bd. 110, S. 395–415, Okt. (2023).
    31. W. Liu, A. Kronenburg, J. Kirchmann, und J. W. Gärtner, „Towards the application of artificial neural networks for chemistry tabulation to sooting ethylene flames“, in 31. Deutscher Flammentag für nachhaltige Verbrennung. Berlin. Germany (Poster), (2023).
  3. 2022

    1. J. Zhang, Z. Xia, O. T. Stein, L. Ma, F. Li, Y. Feng, Z. Zhang, und A. Kronenburg, „Combustion characteristics of aluminum particle jet flames in a hot co-flow“, Chemical Engineering Journal, Bd. 442, S. 135876, (2022).
    2. J. Zhang, Z. Xia, L. Ma, O. T. Stein, Y. Feng, T. D. Luu, und A. Kronenburg, „Sensitivity of flame structure and flame speed in numerical simulations of laminar aluminum dust counterflow flames“, Combust. Flame, Bd. 245, S. 112363, (2022).
    3. J. W. Gärtner, D. D. Loureiro, und A. Kronenburg, „Modelling and Simulation of Flash Evaporation of Cryogenic Liquids“, in Droplet Dynamics Under Extreme Ambient Conditions, K. Schulte, C. Tropea, und B. Weigand, Hrsg. Cham: Springer International Publishing, (2022), S. 233--250.
    4. J. ZHANG, O. T. STEIN, T. D. LUU, A. SHAMOONI, Z. XIA, Z. LUO, L. MA, Y. FENG, und A. KRONENBURG, „Detailed modeling of aluminum particle combustion – From single particles to cloud combustion in Bunsen flames“, Chinese Journal of Aeronautics, Bd. 35, Nr. 5, S. 319–332, (2022).
    5. W. Qian, A. Kronenburg, X. Hui, Y. Lin, und M. Karsch, „Effects of agglomerate characteristics on their collision kernels in the free molecular regime“, Journal of Aerosol Science, Bd. 159, S. 105868, (2022).
    6. S. Yao, A. Kronenburg, und O. T. Stein, „Efficient modeling of the filtered density function in turbulent sprays using ensemble learning“, Combust. Flame, Bd. 237, S. 111722, (2022).
    7. S. Yao, A. Kronenburg, A. Shamooni, O. T. Stein, und W. Zhang, „Gradient Boosted Trees for Combustion Chemistry Integration“, Applications Energy Combust. Sci., Bd. 11, S. 100077, (2022).
    8. M. Karsch, A. Kronenburg, und O. T. Stein, „Coagulation rate coefficients for fractal-like agglomerates in the diffusive and ballistic limits“, Chemical Engineering Research and Design, Bd. 187, S. 611--622, Nov. (2022).
    9. M. Rieth, A. M. Kempf, A. Kronenburg, und O. T. Stein, „Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer“, Fuel, Bd. 212, S. 364–374, (2022).
    10. S. Yao, A. Kronenburg, A. Shamooni, O. T. Stein, und W. Zhang, „Gradient boosted decision trees for combustion chemistry integration“, Applications in Energy and Combustion Science, Bd. 11, S. 100077, (2022).
  4. 2021

    1. F. J. W. A. Martins, A. Kronenburg, und F. Beyrau, „Single-shot two-dimensional multi-angle light scattering (2D-MALS) technique for nanoparticle aggregate sizing“, Applied Physics B, Bd. 127, Nr. 4, S. 51, (2021).
    2. M. Sontheimer, A. Kronenburg, und O. T. Stein, „Two-phase coupling for MMC-LES of spray combustion“, Proc. Combust. Inst., Bd. 38, S. 3361–3369, (2021).
    3. C. Straub, A. Kronenburg, O. T. Stein, S. Galindo-Lopez, und M. J. Cleary, „Mixing time scale models for multiple mapping conditioning with two reference variables“, Flow, Turbul. Combust., Bd. 106, S. 1143–1166, (2021).
    4. M. Sontheimer, A. Kronenburg, und O. T. Stein, „Grid dependence of evaporation rates in Euler–Lagrange simulations of dilute sprays“, Combust. Flame, Bd. 232, S. 111515, (2021).
    5. J. Xing, K. Luo, Y. Chen, O. T. Stein, A. Kronenburg, K. H. Luo, C. Hasse, und J. Fan, „Large eddy simulation of Cambridge bluff-body coal (CCB2) flames with a flamelet progress variable model“, Proc. Combust. Inst., Bd. 38, S. 5347–5354, (2021).
    6. D. D. Loureiro, A. Kronenburg, J. Reutzsch, B. Weigand, und K. Vogiatzaki, „Droplet size distributions in cryogenic flash atomization“, International Journal of Multiphase Flow, Bd. 142, S. 103705, (2021).
    7. X. Wen, H. Nicolai, O. T. Stein, J. Janicka, A. Kronenburg, und C. Hasse, „Effects of air and oxy-fuel atmospheres on flamelet modeling of pollutant formation in laminar counterflow solid fuel flames“, Fuel, Bd. 285, S. 119079, (2021).
    8. S. Yao, B. Wang, A. Kronenburg, und O. T. Stein, „Conditional scalar dissipation rate modelling for turbulent spray flames using artificial neural networks“, Proc. Combust. Inst., Bd. 38, Nr. 3371–3378, (2021).
    9. D. Meller, T. Lipkowicz, M. Rieth, O. T. Stein, A. Kronenburg, C. Hasse, und A. M. Kempf, „Numerical Analysis of a Turbulent Pulverized Coal Flame Using a Flamelet/Progress Variable Approach and Modeling Experimental Artifacts“, Energy & Fuels, Bd. 35, S. 7133–7143, (2021).
    10. J. Kirchmann, A. Kronenburg, O. T. Stein, und M. J. Cleary, „Two-phase sparse-Lagrangian MMC-LES of dilute ethanol spray flames“, Proc. Combust. Inst., Bd. 38, S. 3343–3350, (2021).
    11. T. D. Luu, A. Shamooni, O. T. Stein, A. Kronenburg, S. Popp, H. Nicolai, H. Schneider, X. Wen, und C. Hasse, „Analysis of heat transfer effects in flamelet/progress variable LES of gas-assisted pulverised coal flames“, in 30. Deutscher Flammentag 2021, 28-29 Sept, Hannover-Garbsen, Germany, (2021).
    12. A. Rees, M. Oschwald, J. W. Gärtner, und A. Kronenburg, „Difficulties in Defining the Degree of Superheat in Flash Boiling Liquid Nitrogen Sprays“, in ICLASS Edinburgh 2021, Edinburgh, (2021).
    13. X. Wen, A. Shamooni, O. T. Stein, A. Kronenburg, L. Cai, H. Pitsch, A. M. Kempf, und C. Hasse, „Detailed analysis of early-stage NOx formation in turbulent pulverized coal combustion with fuel-bound nitrogen“, Proc. Combust. Inst., Bd. 38, S. 4111–4119, (2021).
    14. B. Wang, A. Shamooni, O. T. Stein, A. Kronenburg, A. M. Kempf, P. Debiagi, und C. Hasse, „Investigation of Turbulent Pulverized Solid Fuel Combustion with Detailed Homogeneous and Heterogeneous Kinetics“, Energy & Fuels, Bd. 35, S. 7077–7091, (2021).
    15. G. Neuber, A. Kronenburg, O. T. Stein, C. E. Garcia, B. A. O. Williams, F. Beyrau, und M. J. Cleary, „Sparse-Lagrangian PDF Modelling of Silica Synthesis from Silane Jets in Vitiated Co-flows with Varying Inflow Conditions“, Flow, Turbul. Combust., Bd. 106, S. 1167–1194, (2021).
    16. J. W. Gärtner, Y. Feng, A. Kronenburg, und O. T. Stein, „Numerical Investigation of Spray Collapse in GDI with OpenFOAM“, Fluids, Bd. 6, Nr. 3, (2021).
    17. A. Shamooni, P. Debiagi, B. Wang, T. D. Luu, O. T. Stein, A. Kronenburg, G. Bagheri, A. Stagni, A. Frassoldati, T. Faravelli, A. M. Kempf, X. Wen, und C. Hasse, „Carrier-phase DNS of detailed NOx formation in early-stage pulverized coal combustion with fuel-bound nitrogen“, Fuel, Bd. 291, S. 119998, (2021).
    18. F. J. W. A. Martins, J. Kirchmann, A. Kronenburg, und F. Beyrau, „Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations“, Measurement Science and Technology, Bd. 32, Nr. 10, S. 104006, Juni (2021).
    19. M. Sontheimer, A. Kronenburg, und O. T. Stein, „Effects of PSI-cell modeling on subgrid-scale mixture fraction variance for LES of spray combustion“, in 30. Deutscher Flammentag, 28-29 Sept, Hannover-Garbsen, Germany, (2021).
    20. J. Kirchmann, F. J. W. A. Martins, A. Kumar, A. Kronenburg, und F. Beyrau, „Assessment of a Stochastic Particle Approach for IPC Spray Flame Synthesis using Synthetic ELS Signals“, in 30. Deutscher Flammentag 2021, 28-29 Sept, Hannover-Garbsen, Germany, Hannover-Garbsen, (2021).
  5. 2020

    1. D. D. Loureiro, J. Reutzsch, A. Kronenburg, B. Weigand, und K. Vogiatzaki, „Towards full resolution of spray break-up in flash atomization conditions using DNS“, in High Performance Computing in Science and Engineering ’19, (2020), S. 209–224.
    2. F. J. W. A. Martins, J. Kirchmann, A. Kronenburg, und F. Beyrau, „Experimental investigation of axisymmetric, turbulent, annular jets discharged through the nozzle of the SPP1980 SpraySyn burner under isothermal and reacting conditions“, Experimental Thermal and Fluid Science, Bd. 114, S. 110052, (2020).
    3. S. Yao, B. Wang, A. Kronenburg, und O. T. Stein, „Modeling of sub-grid conditional mixing statistics in turbulent sprays using machine learning methods“, Physics of Fluids, Bd. 32, Nr. 11, S. 115124, (2020).
    4. X. Wen, M. Rieth, A. Scholtissek, O. T. Stein, H. Wang, K. Luo, A. Kronenburg, J. Fan, und C. Hasse, „A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer—Part II: Strong heat losses and multi-mode combustion“, Combust. Flame, Bd. 216, S. 453–467, (2020).
    5. J. W. Gärtner, A. Kronenburg, und T. Martin, „Efficient WENO library for OpenFOAM“, SoftwareX, Bd. 12, S. 100611, (2020).
    6. S. Hirschmann, A. Kronenburg, C. W. Glass, und D. Pflüger, „Load-Balancing for Large-Scale Soot Particle Agglomeration Simulations“, in Parallel Computing: Technology Trends, (2020), S. 147--156.
    7. F. Salehi, M. J. Cleary, A. R. Masri, und A. Kronenburg, „Large eddy simulation of polydispersed inertial particles using two-way coupled PDF-PBE“, International Journal of Heat and Fluid Flow, Bd. 83, S. 108585, (2020).
    8. Y. Chen, O. T. Stein, A. Kronenburg, J. Xing, K. Luo, K. H. Luo, und C. Hasse, „Analysis of Gas-Assisted Pulverized Coal Combustion in Cambridge Coal Burner CCB1 Using FPV-LES“, Energy & Fuels, Bd. 34, S. 7477–7489, (2020).
    9. J. W. Gärtner, A. Kronenburg, A. Rees, J. Sender, M. Oschwald, und G. Lamanna, „Numerical and experimental analysis of flashing cryogenic nitrogen“, International Journal of Multiphase Flow, Bd. 130, S. 103360, (2020).
    10. D. D. Loureiro, J. Reutzsch, A. Kronenburg, B. Weigand, und K. Vogiatzaki, „Primary breakup regimes for cryogenic flash atomization“, International Journal of Multiphase Flow, Bd. 132, S. 103405, (2020).
    11. X. Wen, M. Rieth, A. Scholtissek, O. T. Stein, H. Wang, K. Luo, A. M. Kempf, A. Kronenburg, J. Fan, und C. Hasse, „A comprehensive study of flamelet tabulation methods for pulverized coal combustion in a turbulent mixing layer — Part I: A priori and budget analyses“, Combust. Flame, Bd. 216, S. 439–452, (2020).
  6. 2019

    1. G. Neuber, C. E. Garcia, A. Kronenburg, B. A. O. Williams, F. Beyrau, O. T. Stein, und M. J. Cleary, „Sparse-Lagrangian PDF modelling of particulate flame synthesis in turbulent reacting flows“, in Proc. 11th Medit. Combust. Symp., Tenerife, Spain, (2019).
    2. D. Dietzel, T. Hitz, C.-D. Munz, und A. Kronenburg, „Numerical simulation of the growth and interaction of vapour bubbles in superheated liquid jets“, International Journal of Multiphase Flow, Bd. 121, S. 103112, (2019).
    3. M. Sontheimer, A. Kronenburg, und O. T. Stein, „Analysis of the particle-source-in-cell model for LES of spray combustion“, in 29. Deutscher Flammentag 2019, 17-18 June, Bochum, Germany, (2019).
    4. G. L. Tufano, O. T. Stein, A. Kronenburg, G. Gentile, A. Stagni, A. Frassoldati, T. Faravelli, A. M. Kempf, M. Vascellari, und C. Hasse, „Fully-resolved simulations of coal particle combustion using a detailed multi-step approach for heterogeneous kinetics“, Fuel, Bd. 240, S. 75–83, (2019).
    5. S. Kumar Ghai, S. De, und A. Kronenburg, „Numerical simulations of turbulent lifted jet diffusion flames in a vitiated coflow using the stochastic multiple mapping conditioning approach“, Proc. Combust. Inst., Bd. 37, S. 2199–2206, (2019).
    6. X. Wen, O. T. Stein, P. Debiagi, A. Scholtissek, A. Kronenburg, A. M. Kempf, und C. Hasse, „Detailed simulations for flamelet modelling SOx formation from coal“, in Proc. Appl. Math. Mech., 24th May 2019, Vienna, Austria, (2019).
    7. F. Salehi, M. J. Cleary, A. R. Masri, und A. Kronenburg, „PDF-PBE modelling of polydisperse inertial particles in a turbulent recirculating flow“, International Journal of Multiphase Flow, Bd. 117, S. 42–52, (2019).
    8. M. Sontheimer, A. Kronenburg, und O. T. Stein, „Analysis of Multiphase MMC Coupling Using DNS of a Reacting Double Shear Layer“, in Proc. 9th Europ. Combust. Meeting, Lisboa, Portugal, (2019).
    9. X. Wen, O. T. Stein, G. L. Tufano, A. Kronenburg, A. Scholtissek, und C. Hasse, „Multi-dimensional and transient effects on flamelet modeling for turbulent pulverized coal combustion“, Fuel, Bd. 255, S. 115772, (2019).
    10. M. Rieth, A. M. Kempf, O. T. Stein, A. Kronenburg, C. Hasse, und M. Vascellari, „Evaluation of a flamelet/progress variable approach for pulverized coal combustion in a turbulent mixing layer“, Proc. Combust. Inst., Bd. 37, S. 2927–2934, (2019).
    11. O. T. Stein, C. Hasse, und K. Luo, „Target Flames: Cambridge Coal Burner“, in Proc. 3rd Internat. Workshop on Coal and Biomass Conversion (CBC3), Aachen, Germany, (2019).
    12. J. Kirchmann, A. Kronenburg, O. T. Stein, und M. J. Cleary, „Sparse-Lagrangian MMC-LES of dilute ethanol spray flames“, in 29. Deutscher Flammentag 2019, 17-18 June, Bochum, Germany, (2019).
    13. C. Straub, A. Kronenburg, O. T. Stein, R. S. Barlow, und D. Geyer, „Modelling stratified flames with and without shear using multiple mapping conditioning“, Proc. Combust. Inst., Bd. 37, S. 2317–2324, (2019).
    14. X. Wen, P. Debiagi, O. T. Stein, A. Kronenburg, A. M. Kempf, und C. Hasse, „Flamelet tabulation methods for solid fuel combustion with fuel-bound nitrogen“, Combust. Flame, Bd. 209, S. 155–166, (2019).
    15. B. Wang, A. Kronenburg, und O. T. Stein, „Modelling sub-grid passive scalar statistics in moderately dense evaporating sprays“, Flow, Turbul. Combust., Bd. 103, S. 519–535, (2019).
    16. O. T. Stein und H. Watanabe, „Target Flames: CRIEPI coal jet flame“, in Proc. 3rd Internat. Workshop on Coal and Biomass Conversion (CBC3), Aachen, Germany, (2019).
    17. M. Smiljanic, R. Weeber, D. Pflüger, C. Holm, und A. Kronenburg, „Developing coarse-grained models for agglomerate growth“, The European Physical Journal Special Topics, Bd. 227, S. 1515–1527, März (2019).
    18. L. Zhao, M. J. Cleary, O. T. Stein, und A. Kronenburg, „A two-phase MMC-LES model for pyrolysing solid particles in a turbulent flame“, Combust. Flame, Bd. 209, S. 322–336, (2019).
    19. D. Loureiro, J. Reutzsch, A. Kronenburg, B. Weigand, und K. Vogiatzaki, „Resolving breakup in flash atomization conditions using DNS“, in 10th Int’l Conf. Multiphase Flow 2019, 19-24 May 2019, Rio de Janeiro, Brazil, (2019).
    20. D. Dietzel, T. Hitz, C.-D. Munz, und A. Kronenburg, „Single vapour bubble growth under flash boiling conditions using a modified HLLC Riemann solver“, International Journal of Multiphase Flow, Bd. 116, S. 250–269, (2019).
    21. B. Wang, A. Kronenburg, und O. T. Stein, „A new perspective on modelling passive scalar conditional mixing statistics in turbulent spray flames“, Combust. Flame, Bd. 208, S. 376–387, (2019).
    22. G. Neuber, F. Fuest, J. Kirchmann, A. Kronenburg, O. T. Stein, S. Galindo-Lopez, M. J. Cleary, R. S. Barlow, B. Coriton, J. H. Frank, und J. A. Sutton, „Sparse-Lagrangian MMC modelling of the Sandia DME flame series“, Combust. Flame, Bd. 208, S. 110–121, (2019).
    23. J. W. Gärtner, A. Rees, A. Kronenburg, J. Sender, M. Oschwald, und D. D. Loureiro, „Large Eddy Simulation of Flashing Cryogenic Liquid with a Compressible Volume of Fluid Solver“, in ILASS, 2019, 2-4 Sept., Paris, France, (2019).
    24. G. Neuber, C. E. Garcia, A. Kronenburg, B. A. O. Williams, F. Beyrau, O. T. Stein, und M. J. Cleary, „Joint experimental and numerical study of silica particulate synthesis in a turbulent reacting jet“, Proc. Combust. Inst., Bd. 37, S. 1213–1220, (2019).
    25. C. Straub, A. Kronenburg, O. T. Stein, S. Galindo-Lopez, und M. J. Cleary, „Mixing time scale models for multiple mapping conditioning of partially premixed flames“, in Proc. 11th Medit. Combust. Symp., Tenerife, Spain, (2019).
  7. 2018

    1. G. L. Tufano, O. T. Stein, B. Wang, A. Kronenburg, M. Rieth, und A. M. Kempf, „Coal particle volatile combustion and flame interaction. Part I: Characterization of transient and group effects“, Fuel, Bd. 229, S. 262–269, (2018).
    2. D. Loureiro, J. Reutzsch, D. Dietzel, A. Kronenburg, B. Weigand, und K. Vogiatzaki, „DNS of multiple bubble growth and droplet formation in superheated liquids“, in 14th Triennial Int’l Conf. Liquid Atomization Spray Systems (ICLASS), Chicago, USA, (2018).
    3. G. L. Tufano, O. T. Stein, B. Wang, A. Kronenburg, M. Rieth, und A. M. Kempf, „Coal particle volatile combustion and flame interaction. Part II: Effects of particle Reynolds number and turbulence“, Fuel, Bd. 234, S. 723–731, (2018).
    4. M. Rieth, M. Rabacal, A. M. Kempf, A. Kronenburg, und O. T. Stein, „Carrier-phase DNS of biomass particle ignition and volatile burning in a turbulent mixing layer“, Chem. Eng. Trans., Bd. 65, S. 37–42, (2018).
    5. C. Straub, A. Kronenburg, O. T. Stein, G. Kuenne, J. Janicka, R. S. Barlow, und D. Geyer, „Multiple mapping conditioning coupled with an artificially thickened flame model for turbulent premixed combustion“, Combust. Flame, Bd. 196, S. 325–336, (2018).
    6. B. Wang, A. Kronenburg, G. L. Tufano, und O. T. Stein, „Fully resolved DNS of droplet array combustion in turbulent convective flows and modelling for mixing fields in inter-droplet space“, Combust. Flame, Bd. 189, S. 347–366, (2018).
    7. M. Smiljanic, A. Kronenburg, R. Weeber, C. Holm, und D. Pfüger, „Towards a coarse-grained approach for nanoparticle agglomeration“, in Proc. 6th Internat. Conf. on Population Balance Mod., Ghent, Belgium, (2018).
    8. S. Galindo-Lopez, F. Salehi, M. J. Cleary, A. R. Masri, G. Neuber, O. T. Stein, A. Kronenburg, A. Varna, E. R. Hawkes, B. Sundaram, A. Y. Klimenko, und Y. Ge, „A Stochastic Multiple Mapping Conditioning Computational Model in OpenFOAM for Turbulent Combustion“, Computers & Fluids, Bd. 172, S. 410–425, (2018).
    9. Y. Chen, O. T. Stein, A. Kronenburg, M. Vascellari, C. Hasse, und K. H. Luo, „Flamelet progress variable modelling of pulverized coal devolatilisation and burning in opposed jets“, in Conf. on Modelling Fluid Flow (CMFF), Budapest, Hungary., (2018).
    10. N. Khan, M. J. Cleary, O. T. Stein, und A. Kronenburg, „A two-phase MMC–LES model for turbulent spray flames“, Combust. Flame, Bd. 193, S. 424–439, (2018).
    11. S. Vo, A. Kronenburg, O. T. Stein, und M. J. Cleary, „MMC-LES of a syngas mixing layer using an anisotropic mixing time scale model“, Combust. Flame, Bd. 189, S. 311–314, (2018).
    12. B. Wang, H. Chu, A. Kronenburg, und O. T. Stein, „A Resolved Simulation Study on the Interactions Between Droplets and Turbulent Flames Using OpenFOAM“, in High Performance Computing in Science and Engineering ’17, (2018), S. 205–220.
    13. H. Jin, K. Luo, O. T. Stein, H. Watanabe, und X. Ku, „Coal and Biomass Combustion“, Journal of Combustion, Article ID 9654923, (2018).
  8. 2017

    1. B. Wang, A. Kronenburg, D. Dietzel, und O. T. Stein, „Assessment of scaling laws for mixing fields in inter-droplet space“, Proc. Combust. Inst., Bd. 36, S. 2451–2458, (2017).
    2. M. Vascellari, G. L. Tufano, O. T. Stein, A. Kronenburg, A. M. Kempf, A. Scholtissek, und C. Hasse, „A flamelet/progress variable approach for modeling coal particle ignition“, Fuel, Bd. 201, S. 29–38, (2017).
    3. S. Vo, O. T. Stein, A. Kronenburg, und M. J. Cleary, „Assessment of mixing time scales for a sparse particle method“, Combust. Flame, Bd. 179, S. 280–299, (2017).
    4. C. Straub, A. Kronenburg, O. T. Stein, G. Kuenne, und K. Vogiatzaki, „Modelling of turbulent premixed stratified combustion with multiple mapping conditioning mixing model“, in Proc. 8th Europ. Combust. Meeting, Dubrovnik, Croatia, (2017).
    5. A. Kronenburg und O. T. Stein, „LES-CMC of a Partially Premixed, Turbulent Dimethyl Ether Jet Diffusion Flame“, Flow, Turbul. Combust., Bd. 98, S. 803–816, (2017).
    6. O. T. Stein, K. Tainaka, und H. Watanabe, „Target Flames: CRIEPI coal jet flame“, in Proc. 2nd Internat. Workshop on Coal and Biomass Conversion (CBC2), Orlando, FL, USA, (2017).
    7. G. Neuber, A. Kronenburg, O. T. Stein, und M. J. Cleary, „MMC-LES modelling of droplet nucleation and growth in turbulent jets“, Chem. Eng. Sci., Bd. 167, S. 204–218, (2017).
    8. M. Rieth, A. G. Clements, M. Rabaçal, F. Proch, O. T. Stein, und A. M. Kempf, „Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD“, Proc. Combust. Inst., Bd. 36, S. 2181–2189, (2017).
    9. G. L. Tufano, O. T. Stein, R. Knappstein, J. Janicka, und A. Kronenburg, „Resolved flow simulation of pulverized coal particle combustion past a premixed flame front“, in Proc. 8th Europ. Combust. Meeting, Dubrovnik, Croatia, (2017).
    10. D. Dietzel, T. Hitz, C.-D. Munz, und A. Kronenburg, „Expansion rates of bubble clusters in superheated liquids“, in ILASS – Europe 2017, 28th Conf. Liquid Atomization Spray Systems, Sep. 6-8. 2017, Valencia, Spain, (2017).
    11. F. Salehi, M. J. Cleary, A. R. Masri, und A. Kronenburg, „PDF-PBE for Particle Dispersion in a Turbulent Round Jet“, in 11th Asia-Pacific Conference on Combustion, Dec 10-14 2017, Sydney, Australia, (2017).
    12. S. Vo, A. Kronenburg, O. T. Stein, und E. R. Hawkes, „Direct numerical simulation of non-premixed syngas combustion using OpenFOAM“, in High Performance Computing in Science and Engineering ’16, Stuttgart, (2017), S. 245–257.
    13. S. Vo, A. Kronenburg, O. T. Stein, und M. J. Cleary, „Multiple mapping conditioning for silica nanoparticle nucleation in turbulent flows“, Proc. Combust. Inst., Bd. 36, S. 1089–1097, (2017).
    14. S. Vo, A. Kronenburg, O. T. Stein, und M. J. Cleary, „Large eddy simulation of nanoparticle nucleation using multiple mapping conditioning“, in Proc. 8th Europ. Combust. Meeting, Dubrovnik, Croatia, (2017).
    15. G. Inci, A. Kronenburg, R. Weeber, und D. Pflüger, „Langevin Dynamics Simulation of Transport and Aggregation of Soot Nano-particles in Turbulent Flows“, Flow, Turbul. Combust., S. 1065–1085, (2017).
    16. L. F. Zhao, M. J. Cleary, O. T. Stein, und A. Kronenburg, „On the use of sparse-Lagrangian MMC-LES for simulation of a piloted coal jet“, in 11th Asia-Pacific Conference on Combustion, Dec 10-14 2017, Sydney, Australia, (2017).
  9. 2016

    1. G. Neuber, A. Kronenburg, O. T. Stein, M. J. Cleary, B. Coriton, und J. H. Frank, „Sparse-Lagrangian MMC modelling of the Sandia DME (D-F) jet flames“, in 36th Internat. Combust. Symp., Seoul, Republic of Korea, (2016).
    2. G. Neuber, J. Kirchmann, A. Kronenburg, O. T. Stein, und M. J. Cleary, „Sparse-Lagrangian MMC modelling of a partially-premixed DME/air flame series“, in 11th Internat. ERCOFTAC Symp. Eng. Turb. Model. & Meas. (ETMM), Palermo, Italy, (2016).
    3. B. Wang, A. Kronenburg, und O. T. Stein, „Assessment of scaling laws for mixing fields in interdroplet space in reacting flows“, in 27th Europ Conf. on Liquid Atomiz. Spray Syst. (ILASS), Brighton, UK, (2016).
    4. C. Straub, S. De, A. Kronenburg, und K. Vogiatzaki, „The effect of timescale variation in multiple mapping conditioning mixing of PDF calculations for Sandia Flame series D–F“, Combust. Theo. Mod., Bd. 20, S. 894–912, (2016).
    5. G. L. Tufano, O. T. Stein, A. Kronenburg, A. Frassoldati, T. Faravelli, L. Deng, A. M. Kempf, M. Vascellari, und C. Hasse, „Resolved flow simulation of pulverized coal particle devolatilization and ignition in air- and O2/CO2-atmospheres“, Fuel, Bd. 186, S. 285–292, (2016).
  10. 2015

    1. S. Vo, O. T. Stein, A. Kronenburg, und M. J. Cleary, „Analysis of MMC mixing model using DNS of an evolving double shear layer with extinction and reignition“, in Proc. 7th Europ. Combust. Meeting, Budapest, Hungary, (2015).
    2. S. Ukai, A. Kronenburg, und O. T. Stein, „Certain Aspects of Conditional Moment Closure for Spray Flame Modelling“, in High Performance Computing in Science and Engineering ’14, (2015), S. 335–350.
    3. M. J. Cleary, O. T. Stein, A. Kronenburg, und R. W. Bilger, „A New Conserved Scalar Model for coal combustion“, in 8th Internat. Symp. on Coal Combust. (ISCC), Beijing, China, (2015).
    4. N. Seubert, A. Kronenburg, O. T. Stein, Y. Ge, und M. J. Cleary, „Large eddy simulation for the computation of particle characteristics in turbulent jets“, in in Proc. 9th Medit. Combust. Symp., Rhodes, Greece, (2015).
    5. S. Ukai, A. Kronenburg, und O. T. Stein, „Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry“, Proc. Combust. Inst., Bd. 35, S. 1667–1674, (2015).
    6. X. Wen, H. Jin, O. T. Stein, J. Fan, und K. Luo, „Large Eddy Simulation of piloted pulverized coal combustion using the velocity-scalar joint filtered density function model“, Fuel, Bd. 158, S. 494–502, (2015).
    7. D. Dietzel, S. Fechter, C.-D. Munz, und A. Kronenburg, „Vapor bubble growth in superheated liquids“, in ICLASS 2015, 13th Triennial Conf Liquid Atomization Spray Systems, Aug. 23-27. 2015, Tainan, Taiwan, (2015).
    8. O. T. Stein und H. Watanabe, „Target Flames: CRIEPI coal jet flame“, in Proc. 1st Internat. Workshop on Coal and Biomass Conversion (CBC1), Avignon, France, (2015).
    9. G. L. Tufano, C. Hasse, M. Vascellari, A. M. Kempf, I. Wlokas, L. Deng, A. Kronenburg, und O. Stein, „Direct numerical simulation of coal particle devolatilization and volatile combustion“, in 7th European Combustion Meeting, 7th European Combustion Meeting, (2015).
    10. G. Olenik, O. T. Stein, und A. Kronenburg, „LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1“, Proc. Combust. Inst., Bd. 35, S. 2819–2828, (2015).
    11. B. Coriton, M. Zendehdel, S. Ukai, A. Kronenburg, O. T. Stein, S.-K. Im, M. Gamba, und J. H. Frank, „Imaging measurements and LES-CMC modeling of a partially-premixed turbulent dimethyl ether/air jet flame“, Proc. Combust. Inst., Bd. 35, S. 1251–1258, (2015).
    12. G. Neuber, Y. Gao, A. Kronenburg, O. T. Stein, und M. J. Cleary, „LES-MMC modelling of a partially-premixed turbulent DME/air jet flame“, in Proc. Austral. Combust. Symp., Melbourne, Australia, (2015).
    13. K. Vogiatzaki, S. Navarro-Martinez, S. De, und A. Kronenburg, „Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction“, Flow, Turbul. Combust., Bd. 95, S. 501--517, Okt. (2015).
  11. 2014

    1. G. Inci, A. Arnold, A. Kronenburg, und R. Weeber, „Modeling Nanoparticle Agglomeration using Local Interactions“, Aerosol Sci. and Technology, Bd. 48, S. 842–852, (2014).
    2. K. Vogiatzaki, S. Navarro-Martinez, S. De, und A. Kronenburg, „Modelling of a turbulent jet flame close to extinction with multiple mapping conditioning“, in 10th Symposium on Engineering Turbulence Modelling and Measurements, Marbella, Spain, (2014).
    3. T. Ma, O. T. Stein, N. Chakraborty, und A. M. Kempf, „A posteriori testing of the flame surface density transport equation for LES“, Combust. Theo. Mod., Bd. 18, Nr. 1, S. 32–64, (2014).
    4. S. Vo, A. Kronenburg, O. T. Stein, Y. Ge, A. Y. Klimenko, und M. J. Cleary, „Analysis of LES-MMC modelling using DNS of a reacting mixing layer“, in 8th International Seminar on Flame Structure, Berlin, Germany, (2014).
    5. M. Rieth, F. Proch, O. T. Stein, M. W. A. Pettit, und A. M. Kempf, „Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow“, Computers & Fluids, Bd. 99, S. 172–181, (2014).
    6. D. Dietzel, D. Messig, F. Piscaglia, A. Montorfano, G. Olenik, O. T. Stein, A. Kronenburg, A. Onorati, und C. Hasse, „Evaluation of scale resolving turbulence generation methods for Large Eddy Simulation of turbulent flows“, Computers & Fluids, Bd. 93, S. 116–128, (2014).
    7. G. Inci, A. Kronenburg, und A. Arnold, „Characteristics of soot aggregation in convective environments“, in 10th Symp. Eng. Turbul. Mod. and Meas. (ETMM), Marbella, (2014).
    8. D. Dietzel, S. Fechter, C.-D. Munz, und A. Kronenburg, „Investigation of vapor bubble growth under flash boiling conditions“, in 26th Ann. Conf. Liquid Atomization Spray Systems (ILASS Europe), Bremen, Germany, (2014).
    9. S. Ukai, A. Kronenburg, und O. T. Stein, „Simulation of Dilute Acetone Spray Flames with LES-CMC Using Two Conditional Moments“, Flow, Turbul. Combust., Bd. 93, S. 405--423, (2014).
    10. M. N. Khan, L. F. Zhao, M. J. Cleary, R. W. Bilger, O. T. Stein, und A. Kronenburg, „A mixture fraction-based model for evaporation, pyrolysis and char conversion of dilute fuel dispersion“, in 19th Australasian Fluid Mech. Conf., Melbourne, Australia, (2014).
  12. 2013

    1. S. Ukai, A. Kronenburg, und O. T. Stein, „LES-CMC of a dilute acetone spray flame with pre-vapor using two conditional moments“, in Proc. 6th Europ. Combust. Meeting, Lund, Sweden, (2013).
    2. N. Seubert, A. Kronenburg, O. T. Stein, Y. Ge, und M. J. Cleary, „Mixing model effects on LES-PDF-PBE simulations of DBP droplets in a turbulent jet“, in 25th European Conference on Liquid Atomization and Spray Systems (ILASS) 2013, Chania, Crete, (2013).
    3. D. Dietzel, D. Messig, F. Piscaglia, A. Montorfano, G. Olenik, O. T. Stein, A. Kronenburg, und C. Hasse, „Comparison of inflow generation methods for LES of turbulent flames“, in 14th SIAM Internat. Conf. Numerical Combust., San Antonio, USA, (2013).
    4. O. T. Stein, G. Olenik, A. Kronenburg, F. Cavallo Marincola, B. M. Franchetti, A. M. Kempf, M. Ghiani, M. Vascellari, und C. Hasse, „Towards Comprehensive Coal Combustion Modelling for LES“, Flow, Turbul. Combust., Bd. 90, S. 859–884, Juni (2013).
    5. G. Inci und A. Kronenburg, „Particle Aggregation: A Comparison between Molecular Dynamics Simulations and Modelling by the Population Balance Equation“, in Proc. 5th Internat. Conf. on Population Balance Mod., Bangalore, India, (2013).
    6. T. Ma, O. T. Stein, N. Chakraborty, und A. M. Kempf, „A posteriori testing of algebraic flame surface density models for LES“, Combust. Theo. Mod., Bd. 17, Nr. 3, S. 431–482, (2013).
    7. P. Siwaborworn und A. Kronenburg, „Conservative Implementation of LES-CMC for Turbulent Jet Flames“, in High Performance Computing in Science and Engineering ’12, (2013), S. 159–173.
    8. S. Ukai, A. Kronenburg, und O. T. Stein, „LES-CMC of a dilute acetone spray flame“, Proc. Combust. Inst., Bd. 34, S. 1643–1650, (2013).
    9. S. Ukai, A. Kronenburg, und O. T. Stein, „Simulation of dilute acetone spray flames with LES-CMC using two conditional moments“, in in Proc. 8th Medit. Combust. Symp., Cesme, Turkey, (2013).
    10. G. Olenik, O. T. Stein, und A. Kronenburg, „LES of an industrial scale swirled pulverised coal furnace“, in 26th German Flame Day, VDI-Tagungsband 2161:235-242, (2013).
    11. G. Inci und A. Kronenburg, „Modelling aerosol agglomeration using molecular dynamics methodology“, in 2013 Europ. Aerosol Conf. (EAC 2013), Prague, Czech Republic, (2013).
  13. 2012

    1. F. Bottone, A. Kronenburg, D. Gosman, und A. Marquis, „The Numerical Simulation of Diesel Spray Combustion with LES-CMC“, Flow, Turbul. Combust., Bd. 89, Nr. 4, S. 651--673, Dez. (2012).
    2. F. Bottone, A. Kronenburg, D. Gosman, und A. Marquis, „Large Eddy Simulation of Diesel Engine In-cylinder Flow“, Flow, Turbul. Combust., Bd. 88, Nr. 1, S. 233--253, März (2012).
    3. N. Seubert, A. Kronenburg, O. T. Stein, Y. Ge, und M. J. Cleary, „Large Eddy simulation-probability density function modelling of nucleation and condensation of DBP droplets in a turbulent jet“, in 12th International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, (2012).
    4. C. Olbricht, O. T. Stein, J. Janicka, J. A. van Oijen, S. Wysocki, und A. M. Kempf, „LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry“, Fuel, Bd. 96, S. 100–107, (2012).
    5. J. J. Choi und A. Kronenburg, „Modelling Mixing and Particle Formation in Supercritical Antisolvent Processes“, in 10th Workshop über Sprays, Techniken der Fluidzerstäubung und Untersuchungen von Sprühvorgängen, SPRAY 2012, Berlin, Germany, (2012).
    6. M. R. G. Zoby, A. Kronenburg, S. Navarro-Martinez, und A. J. Marquis, „Assessment of Conventional Droplet Evaporation Models for Spray Flames“, in High Performance Computing in Science and Engineering ’11, (2012), S. 209–227.
  14. 2011

    1. O. Stein, A. Kempf, T. Ma, C. Olbricht, A. Duncan, und G. D. Lewis, „Large Eddy Simulation of non-reacting gas flow in a 40 MW pulverised coal combustor“, Progress in Computational Fluid Dynamics, Bd. 11, S. 397–402, Okt. (2011).
    2. M. R. G. Zoby, S. Navarro-Martinez, A. Kronenburg, und A. J. Marquis, „Evaporation rates of droplet arrays in turbulent reacting flows“, Proc. Combust. Inst., Bd. 33, S. 2117–2125, (2011).
    3. F. Bottone, A. Kronenburg, A. J. Marquis, A. D. Gosman, und E. Mastorakos, „The numerical simulation of Diesel spray combustion with LES-CMC“, in in Proc. 5th Europ. Combust. Meeting, Cardiff, UK, (2011).
    4. G. Olenik, O. T. Stein, und A. Kronenburg, „LES of a piloted pulverized coal jet“, in 1st ERCOFTAC Conf. on Simul. of Multiphase Flows in Gasific. and Combust., Dresden, Germany, (2011).
    5. S. Ukai, O. T. Stein, und A. Kronenburg, „Large eddy simulations of turbulent evaporating acetone spray jets“, in Proc. 5th Europ. Combust. Meeting, Cardiff, UK, (2011).
    6. A. M. Kempf, B. J. Geurts, T. Ma, M. W. A. Pettit, und O. T. Stein, „Quality Issues in Combustion LES“, Journal of Scientific Computing, Bd. 49, Nr. 1, S. 51--64, 0 (2011).
    7. S. Navarro-Martinez und A. Kronenburg, „Flame Stabilization Mechanisms in Lifted Flames“, Flow, Turbul. Combust., Bd. 87, Nr. 2, S. 377--406, Okt. (2011).
    8. A. Kronenburg, M. R. G. Zoby, S. Navarro-Martinez, und A. J. Marquis, „Scalar Mixing in Droplet Arrays in Stagnant and Convective Environments“, in High Performance Computing in Science and Engineering ’10, (2011), S. 191–202.
    9. K. Vogiatzaki, A. Kronenburg, S. Navarro-Martinez, und W. P. Jones, „Stochastic multiple mapping conditioning for a piloted, turbulent jet diffusion flame“, Proc. Combust. Inst., Bd. 33, Nr. 1, S. 1523–1531, (2011).
    10. M. R. G. Zoby, S. Navarro-Martinez, A. Kronenburg, und A. J. Marquis, „Turbulent mixing in three-dimensional droplet arrays“, Int. J. Heat Fluid Flow, Bd. 32, S. 499–509, (2011).
    11. S. Ukai, O. T. Stein, und A. Kronenburg, „Large eddy simulations of turbulent acetone spray combustion with conditional moment closure“, in 25th German Flame Day, VDI-Tagungsband 2119:233-240, Karlsruhe, Germany, (2011).
    12. K. Vogiatzaki, S. Navarro-Martinez, und A. Kronenburg, „Modelling of Sandia Flame F with Multiple Mapping Conditioning“, in in Proc. 5th Europ. Combust. Meeting, Cardiff, UK, (2011).
    13. A. Kronenburg und E. Mastorakos, „The Conditional Moment Closure Model“, in Turbulent Combustion Modeling: Advances, New Trends and Perspectives, T. Echekki und E. Mastorakos, Hrsg. Dordrecht: Springer Netherlands, (2011), S. 91--117.
    14. F. Bottone, A. Kronenburg, A. J. Marquis, A. D. Gosman, und E. Mastorakos, „The role of scalar dissipation rate models in LES-CMC of turbulent non-premixed flames“, in International Conference on Numerical Combustion, Corfu (2011), (2011).
    15. O. T. Stein, B. Böhm, A. Dreizler, und A. M. Kempf, „Highly-resolved LES and PIV Analysis of Isothermal Turbulent Opposed Jets for Combustion Applications“, Flow, Turbul. Combust., Bd. 87, Nr. 2, S. 425--447, 0 (2011).
  15. 2010

    1. O. T. Stein, G. Lewis, C. Olbricht, J. Gibbins, und A. M. Kempf, „Numerical simulation of flow and combustion in a 40MW industrial coal furnance“, in 8th Internat. ERCOFTAC Symp. Eng. Turb. Model. & Meas., Marseille, France (2010), (2010).
    2. F. Bottone, A. Kronenburg, A. J. Marquis, und A. D. Gosman, „Towards the Large-Eddy Simulation of Diesel engine incylinder flow“, in Proc. 8th International Symposium on Engineering Turbulence Modelling and Measurements - ETMM8, 3:418-423 (2010), (2010).
    3. F. Bottone, A. Kronenburg, A. J. Marquis, und A. D. Gosman, „An LES-CMC method for the numerical simulation of Diesel engine combustion“, in LES for internal combustion Engine Flows – LES4ICE, IFP, Paris, France (2010), (2010).
    4. P. Y. Vaishnavi und A. Kronenburg, „Multiple Mapping Conditioning for velocity statistics in turbulent jet flames“, Combust. Flame, Bd. 157, S. 1863–1865, (2010).
    5. M. R. G. Zoby, S. Navarro-Martinez, A. Kronenburg, und A. J. Marquis, „Turbulent mixing in three-dimensional droplet arrays“, in Proc. 8th International Symposium on Engineering Turbulence Modelling and Measurements - ETMM8, 3:794-799 (2010), (2010).
    6. M. R. G. Zoby, S. Navarro-Martinez, A. Kronenburg, und A. J. Marquis, „Gas-Phase Mixing in Droplet Arrays“, in Turbulence and Interactions, Berlin, Heidelberg, (2010), S. 409--415.
  16. 2009

    1. J. Floyd, A. M. Kempf, A. Kronenburg, und R. H. Ram, „A simple model for the filtered density function for a passive scalar in combustion LES“, Combust. Theo. Mod., Bd. 13, S. 559--588, (2009).
    2. M. R. G. Zoby, S. Navarro-Martinez, und A. Kronenburg, „Mixture fraction PDF and dissipation in dense sprays“, in in Proc. 4th Europ. Combust. Meeting, Vienna, Austria, (2009).
    3. S. Navarro-Martinez und A. Kronenburg, „Numerical study of turbulent non-premixed jet flame stability“, in in Proc. 4th Europ. Combust. Meeting, Vienna, Austria, (2009).
    4. K. Vogiatzaki, S. Navarro-Martinez, A. Kronenburg, und W. P. Jones, „Stochastic multiple mapping conditioning for scalar mixing in Sandia Flame D“, in in Proc. 4th Europ. Combust. Meeting, Vienna, Austria, (2009).
    5. K. Vogiatzaki, M. J. Cleary, A. Kronenburg, und J. H. Kent, „Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning“, Physics of Fluids, Bd. 21, Nr. 2, S. 025105, (2009).
Zum Seitenanfang